ΦΓ1

Βρίσκουμε πόσα σημεία μεταξύ των δύο πηγών ταλαντώνονται με μέγιστο πλάτος.

Αν x η απόσταση ενός τέτοιου σημείου από την πρώτη πηγή Ο1 τότε από την άλλη απέχει κατά d-x και πρέπει:

x-(d-x)= κλ

2x –d=κ·2

x= 5,5 +κ

Όμως

Άρα οι ακέραιες τιμές που μπορεί να πάρει το κ είναι:

-5, -4, -3, -2, -1, 0, 1, 2, 3, 4 και 5.

Για το σημείο Σ έχουμε:

r1r2 = 14cm-20cm = -6cm = (-3) 2cm = (-3) λ.

Συνεπώς το σημείο Σ βρίσκεται στην τρίτη υπερβολή που υπάρχει μεταξύ του μέσου Μ της Ο1Ο2 και της πηγής Ο1. Έχουμε ακόμη άλλες δύο υπερβολές (με τιμές του κ -4 και -5, οι οποίες περνάνε από το ευθύγραμμο τμήμα ΣΟ1, οπότε υπάρχουν και δύο σημεία που ταλαντώνονται με μέγιστο πλάτος, όπως φαίνεται και στο παρακάτω σχήμα.


Σωστό το β.